Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.

Identifieur interne : 000528 ( Main/Exploration ); précédent : 000527; suivant : 000529

Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.

Auteurs : Marta Derba-Maceluch [Suède] ; Fariba Amini [Suède, Iran] ; Evgeniy N. Donev [Suède] ; Prashant Mohan-Anupama Pawar [Suède] ; Lisa Michaud [Suède] ; Ulf Johansson [Suède] ; Benedicte R. Albrectsen [Suède] ; Ewa J. Mellerowicz [Suède]

Source :

RBID : pubmed:32528503

Abstract

The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.

DOI: 10.3389/fpls.2020.00651
PubMed: 32528503
PubMed Central: PMC7265884


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.</title>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Amini, Fariba" sort="Amini, Fariba" uniqKey="Amini F" first="Fariba" last="Amini">Fariba Amini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Faculty of Science, Arak University, Arak, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Biology Department, Faculty of Science, Arak University, Arak</wicri:regionArea>
<wicri:noRegion>Arak</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donev, Evgeniy N" sort="Donev, Evgeniy N" uniqKey="Donev E" first="Evgeniy N" last="Donev">Evgeniy N. Donev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pawar, Prashant Mohan Anupama" sort="Pawar, Prashant Mohan Anupama" uniqKey="Pawar P" first="Prashant Mohan-Anupama" last="Pawar">Prashant Mohan-Anupama Pawar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Lisa" sort="Michaud, Lisa" uniqKey="Michaud L" first="Lisa" last="Michaud">Lisa Michaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Ulf" sort="Johansson, Ulf" uniqKey="Johansson U" first="Ulf" last="Johansson">Ulf Johansson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen</wicri:regionArea>
<wicri:noRegion>Simlångsdalen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R" last="Albrectsen">Benedicte R. Albrectsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32528503</idno>
<idno type="pmid">32528503</idno>
<idno type="doi">10.3389/fpls.2020.00651</idno>
<idno type="pmc">PMC7265884</idno>
<idno type="wicri:Area/Main/Corpus">000256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000256</idno>
<idno type="wicri:Area/Main/Curation">000256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000256</idno>
<idno type="wicri:Area/Main/Exploration">000256</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.</title>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Amini, Fariba" sort="Amini, Fariba" uniqKey="Amini F" first="Fariba" last="Amini">Fariba Amini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Faculty of Science, Arak University, Arak, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Biology Department, Faculty of Science, Arak University, Arak</wicri:regionArea>
<wicri:noRegion>Arak</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donev, Evgeniy N" sort="Donev, Evgeniy N" uniqKey="Donev E" first="Evgeniy N" last="Donev">Evgeniy N. Donev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pawar, Prashant Mohan Anupama" sort="Pawar, Prashant Mohan Anupama" uniqKey="Pawar P" first="Prashant Mohan-Anupama" last="Pawar">Prashant Mohan-Anupama Pawar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Lisa" sort="Michaud, Lisa" uniqKey="Michaud L" first="Lisa" last="Michaud">Lisa Michaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Ulf" sort="Johansson, Ulf" uniqKey="Johansson U" first="Ulf" last="Johansson">Ulf Johansson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen</wicri:regionArea>
<wicri:noRegion>Simlångsdalen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R" last="Albrectsen">Benedicte R. Albrectsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of
<i>REDUCED WALL ACETYLATION</i>
(
<i>RWA</i>
) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (
<i>35S</i>
) or a wood-specific promoter (
<i>WP</i>
). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (
<i>WP:GUS</i>
) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the
<i>35S</i>
promoter, not those with the
<i>WP</i>
promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the
<i>35S</i>
promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32528503</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.</ArticleTitle>
<Pagination>
<MedlinePgn>651</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00651</ELocationID>
<Abstract>
<AbstractText>The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of
<i>REDUCED WALL ACETYLATION</i>
(
<i>RWA</i>
) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (
<i>35S</i>
) or a wood-specific promoter (
<i>WP</i>
). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (
<i>WP:GUS</i>
) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the
<i>35S</i>
promoter, not those with the
<i>WP</i>
promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the
<i>35S</i>
promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.</AbstractText>
<CopyrightInformation>Copyright © 2020 Derba-Maceluch, Amini, Donev, Pawar, Michaud, Johansson, Albrectsen and Mellerowicz.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Derba-Maceluch</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amini</LastName>
<ForeName>Fariba</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biology Department, Faculty of Science, Arak University, Arak, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Donev</LastName>
<ForeName>Evgeniy N</ForeName>
<Initials>EN</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pawar</LastName>
<ForeName>Prashant Mohan-Anupama</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michaud</LastName>
<ForeName>Lisa</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Ulf</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Albrectsen</LastName>
<ForeName>Benedicte R</ForeName>
<Initials>BR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mellerowicz</LastName>
<ForeName>Ewa J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AnAXE1</Keyword>
<Keyword MajorTopicYN="N">HjAXE</Keyword>
<Keyword MajorTopicYN="N">Populus tremula × tremuloides</Keyword>
<Keyword MajorTopicYN="N">biotic resistance</Keyword>
<Keyword MajorTopicYN="N">condensed tannins</Keyword>
<Keyword MajorTopicYN="N">field trial</Keyword>
<Keyword MajorTopicYN="N">salicinoid phenolic glucosides</Keyword>
<Keyword MajorTopicYN="N">transgenic trees</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32528503</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00651</ArticleId>
<ArticleId IdType="pmc">PMC7265884</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2010 Feb 25;10:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2019 Feb;45(2):162-177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30788656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2019 Mar 1;39(3):345-355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30917196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Nov;77(4-5):433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22662190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1240-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2011;76:195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(6):968-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15584961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 01;6(2):e16645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2020 Apr 08;11:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32322259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1491-1505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 4;300(5616):61-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12677045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2013 Dec;168(4):684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jun;43(2-3):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10999403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2016 Nov 15;34(7):1260-1274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27620948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Bioeng Biotechnol. 2018 Aug 03;6:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30123794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Mar;36(3):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20177744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1085-1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 21;10(10):e0140971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26488414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29784790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):410-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25952793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23463782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 21;4:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23734153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 03;9(9):e106509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2020 Apr;102(1):99-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31736216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Jan;37(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 31;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2014 Jun;24(6):494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24637390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolomics. 2019 Sep 28;15(10):130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31563978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1068-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Oct 23;9:1537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30405672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 28;5:228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jul;41(7):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 09;9(10):e107189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14(1):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25960248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Jul 20;67(2):252-265.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28689661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Nov;240(5):1123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25115560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Jun 2;62(5):695-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27259202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):614-636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Apr 20;10:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28428822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jun;16(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Nov;3(11):859-865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Feb 1;37(2):270-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27986954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Oct;22(10):3193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Aug 21;9:1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30186297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:103-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26482946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Jan;13(1):26-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Dec;181(4):1704-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31551361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25141999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jul;8(7):1119-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25743197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316173</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Iran</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
</noRegion>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R" last="Albrectsen">Benedicte R. Albrectsen</name>
<name sortKey="Amini, Fariba" sort="Amini, Fariba" uniqKey="Amini F" first="Fariba" last="Amini">Fariba Amini</name>
<name sortKey="Donev, Evgeniy N" sort="Donev, Evgeniy N" uniqKey="Donev E" first="Evgeniy N" last="Donev">Evgeniy N. Donev</name>
<name sortKey="Johansson, Ulf" sort="Johansson, Ulf" uniqKey="Johansson U" first="Ulf" last="Johansson">Ulf Johansson</name>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<name sortKey="Michaud, Lisa" sort="Michaud, Lisa" uniqKey="Michaud L" first="Lisa" last="Michaud">Lisa Michaud</name>
<name sortKey="Pawar, Prashant Mohan Anupama" sort="Pawar, Prashant Mohan Anupama" uniqKey="Pawar P" first="Prashant Mohan-Anupama" last="Pawar">Prashant Mohan-Anupama Pawar</name>
</country>
<country name="Iran">
<noRegion>
<name sortKey="Amini, Fariba" sort="Amini, Fariba" uniqKey="Amini F" first="Fariba" last="Amini">Fariba Amini</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000528 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000528 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32528503
   |texte=   Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32528503" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020